Module Number Tit	Title:				
2a F	oundations N	ledical Phys	ics		
Module type: compulse	ory elective Langu	age: English	Group Size: 18 students		
Study semester: 1	Availability: wint	er semester	Duration: 1 semester		
Workload: C	redits:	Contact time:	Independent Study:		
180 hrs 6	CP	30 hrs	150 hrs		
1 Courses					
a) Lecture: 1 PPW					
b) Practical Cours	b) Practical Course: 2 PPW				
2 Intended Learnin	Intended Learning Outcomes				
Upon completion	Upon completion of this course, students should be able to describe physics concepts				
with relevance in	with relevance in medicine and apply these concepts in diagnostics and therapy. After				
	the attendance of this course, students are capable to operate essential medical				
physics equipment, understand their physics and document and analyse the scientific					
3 Content					
Lecture:					
i. <i>Physics of x-Ray tomography</i> . x-ray production. x-ray absorption and scattering. x-ray					
detection. Image formation.					
ii. Magnetic resonance. Magnetic spins, Larmor frequency, spin resonance, spin					
interaction, contrast, electromagnetic induction.					
iii. Magnetic resonance imaging. Spin manipulation, spin relaxation, spin-echo and					
gradient echo ima	gradient echo imaging techniques.				
IV. Ultrasound ima	iv. Ultrasound imaging. Production and propagation of ultrasounds, imaging, absorption				
and reflection of t	utrasounds, image res	SOIUTION.	d valacity and application		
v. Blood flow. Lai	minar and turbulent no	w, Doppler effect, bloo	or velocity and application		
10 516110515.					
Practical Course:					
<i>i. x-Ray tomography</i> . 3D imaging and artefacts, absorption and scattering, image					
formation.					
ii. Magnetic resonance. Measuring of the Larmor frequency, free induction decay,					
measuring of the relaxation times, effect of contrast substance.					
iii. Magnetic resonance imaging. Spin-echo and gradient echo techniques. Effect of					
work parameters on the image quality.					
IV. Ultrasonic Ima	IV. Ultrasonic imaging. Measuring of sizes and distances, 3D-imaging and artefacts.				
the even using an	the averusing on the near rate and cardiac output in a near model. Oitrasonic control of				
v Blood flow Me	asuring the blood velo	city in an arm-model	Measuring of Jaminar		
turbulent flow in c	continuous and pulsed	mode. Stenosis detec	tion and characterisation.		
4 Teaching metho	ds				
Lecture on the ma	athematics and conce	pts of medical physics	and their experimental		
implementation (b	implementation (block of 15 lessons in one week); carrying out experiments in the				
laboratory, taking	, analysis and interpre	tation of experimental	data in the fields of the		
content (5 blocks	of 5 hrs each).				
5 Prerequisites		(a –			
Formal: Proficier	Formal: Proficiency in English level B2 of Common European Framework of Reference				
Tor Languages (C	EFK)	adap of and interact in	mothematics and shuriss		
6 Examination for	Content: Basic Knowl	euge of and interest in	mainematics and physics		
Written report	100				
The report should	The report should be about 10 pages per experiment, document the familiarity with the				
experimental wor	k and contain the data	taken as well as their	analysis.		

7	Requirements for award of credit points Active participation on practical exercise; passing the oral examination prior to each experiment and submission of a report which gets graded with 4.0 or better four weeks after ending of practical exercise.
δ	None
9	Assessment The mark given will contribute to the final grade in proper relation to its credits.
10	<u>Module convenor</u> and main lecturers Prof. Dr. Thomas Heinzel, PD Dr. Mihai Cerchez
11	Further information Pre-reading material will be handed out 2 weeks in advance of the laboratory course. The lecture is scheduled for the week preceding the laboratory course. The content of both the pre-reading material and the lecture is prerequisite for the admission to the experimental equipment. For safety reasons and for the conservation of high-value technical resources prior to each experiment the students will be examined orally regarding the operational principles of the experiment. Successful examination grants permission to start the experiment.